Hamiltonian unknottedness of certain monotone Lagrangian tori in S2× S2

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lagrangian unknottedness in Stein surfaces

We show that the space of Lagrangian spheres inside the cotangent bundle of the 2-sphere is contractible. We then discuss the phenomenon of Lagrangian unknottedness in other Stein surfaces. There exist homotopic Lagrangian spheres which are not Hamiltonian isotopic, but we show that in a typical case all such spheres are still equivalent under a symplectomorphism.

متن کامل

S2 Text

Empirical density plots (Fig A to J) suggest that π̂IBD for pairs of parasite samples within and across clinics loosely follow a mixture distribution over three classes: 1) near zero π̂IBD shown in green; 2) low to intermediate π̂IBD shown in shades of blue; and 3) high π̂IBD, which notably rarefies with distance, and is colored red if sufficiently dense to be visible, and otherwise outlined in bla...

متن کامل

S2 Table

All tools used in the online tutorial (www.rnaseq.wiki) are referenced below (in bold) along with alternative tools in each category. Where possible a citation is provided. Links are also provided to help the user evaluate the code and the level of maintenance. Where possible the link goes directly to a source controlled repository such as a git repo. Additional lists of tools can be found here...

متن کامل

Text S2

The nomenclature used here (see also Fig. S1) was built on classical dental serial homologies. The work of Hershkovitz [2] was a major source for defining homologous structures and naming them, but other sources were also considered [3-7]. These works emphasized dental structures that are expressed as relief on tooth crowns. Structures expressed as depressions, in particular groove systems, wer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pacific Journal of Mathematics

سال: 2019

ISSN: 0030-8730,0030-8730

DOI: 10.2140/pjm.2019.299.427